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Abstract  

Previous researchers have considered the influence of stress sensitivity and elastic outer boundary on the flow 

characteristics of fluids in reservoir, and solved the problem by considering stress sensitivity and elastic outer boundary 

conditions when analyzing the flow characteristics, but the stress sensitivity and elastic outer boundary conditions are not 

taken into account at the same time, the error still arises in the well test analysis. 

In order to simplify the complex problem in solving the  model, we obtained analytical solutions in Laplace space by 

applying inverse transformation and obtained the pressure and pressure derivative curve, and analyzed the sensitivity of 

the characteristic values for pressure and pressure derivative curve. 

In order to simplify the complex problem in solving the model, Pedrosa’s transformation and perturbation’s transformation 

were applied. 

Using these transformations, the nonlinear partial differential equation was linearly transformed. By Laplace 

transformation, we obtained analytical solutions in Laplace space and applied inverse transformation to obtain solutions in 

real space, and plotted the pressure and pressure derivative curves. 

The model accuracy was verified by comparison with previous studies and sensitivity analysis of the characteristics for 

pressure and pressure derivative curves was performed. 

This study is of great significance in improving the accuracy of the parameters of the well and reservoir determined by well 

test analysis. 

Keywords: stress sensitivity; dual-porosity reservoir; well testing; elastic outer boundary 

Introduction 

During oil extraction, the permeability of the reservoir changes due to the 

decrease of the pressure of reservoir and the increase of effective stress. 

Many researchers have studied reservoir models considering the stress 

sensitivity and stress sensitivity of reservoir. 

Jiang and Yang (2018) presented a complete coupled model of fluid flow 

and geomechanics characterizing stress-sensitive reservoir  in hydraulic 

fractured coal bed methane reservoirs, and Guo etc. (2015) presented 

pressure unsteady analysis and flow attenuation analysis for hydraulic 

fracturing vertical wells with finite conductivity in shale reservoirs 

considering multi-flow mechanisms including desorption, diffusion, 

Darcy flow and stress sensitivity. 

Zhao etc. (2020), Jabbari etc. (2012) studied the effect of stress sensitivity 

on analyzing the flow characteristics of fluids in fractured reservoirs, 

Wang and Wang (2016) proposed that the effect of stress sensitivity on 

establishing a semi-analytical model considering the sliding effect in 

fractured gas reservoirs, Huang etc. (2018a) presented an unsteady flow 

model of horizontal well in stress sensitive composite reservoirs, Li etc. 

(2017) developed a dual-porosity medium model of horizontal well 

considering the influence of stress sensitivity. 

Aguilera (2008) proposed a material balance equation considering the 

effective compressibility of the dual-porous medium, Wang etc. (2014; 

2017c) and Luo etc. (2021) and Mo etc. (2016) considered the stress 

sensitivity when establishing a fluid flow model in a fractured reservoirs. 

Ren and Guo (2018) studied the general analytical method of unsteady 

flow rate considering the influence of stress sensitive permeability, 

Jelmert and Toverud (2017) presented a model of stress sensitive reservoir 

and their solution based on the outer elastic modulus and plotted the 

corresponding typical curve. 

Li etc. (2020a) proposed a sampling model that considers stress sensitivity 

based on the combination of fluid flow characteristics and rock mechanics 

in triple porous media including kerogen, inorganic and fracture 

networks. 
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Chen etc. (2021) developed a model considering the threshold pressure 

gradient, gas slip and stress sensitivity when developing a mathematical 

model in a dual-porosity gas reservoir, and Xue etc. (2021) conducted a 

study of a dense sandstone gas reservoir where water is taken together and 

found that the influence of stress sensitivity in a dense sandstone gas 

reservoir is strongly influenced. 

Lian etc. (2011) and Zhao etc. (2013) studied the stress sensitivity of 

permeability in the laboratory, Wang etc. (2018), Shu and Yan (2008), 

Selvadurai etc. (2018), Wang etc. (2018), Wang etc. (2011), Feng etc. 

(2021), Tian etc. (2015) conducted a laboratory study on the effect of 

stress sensitivity on the bed gas layer, and Zheng etc. (2015) conducted 

experiments using nuclear magnetic resonance technique to investigate 

the relationship between the permeability and its effective stress, and 

Zhang etc. (2019) proposed the influence of stress sensitivity on a gas 

reservoir, and Zhang etc. (2019) proposed the influence of stress 

sensitivity on the system. 

Shovkun and Espinoza (2017) considered the flow of fluid taking into 

account the stress induced by adsorption in the stress-sensitive coal bed 

methane, and carried out geomechanical simulations considering shear 

rupture in the coal reservoir and migration of coal dust.    Wu etc. (2018c) 

and Xu etc. (2021) proposed a well test model in a multi-hydraulic 

fractured horizontal well considering stress sensitivity. 

Zhang etc. (2010) developed an analytical well test model considering 

stress sensitivity to several factors in a low permeability reservoir, and 

Wang etc. (2017a) considered the effect of stress sensitivity on horizontal 

well test analysis in a multi-view low permeability natural fracture  

reservoirs. 

Wu etc. (2018b) and Ji etc. (2017), Huang etc. (2018b) considered stress 

sensitivity in a dense reservoir, Wu etc. (2018a) proposed a multi-

hydraulic fractured horizontal well test model considering stress 

sensitivity in a dense gas reservoir, Wang etc. (2020), Liu etc. (2015), Du 

etc. (2020), proposed a mathematical model considering stress sensitivity 

in a vertical well of a hydraulic fractured coal reservoir, Chen etc. (2016), 

Wang etc. (2021) proposed a numerical model considering stress 

sensitivity in a vertical well of a hydraulic fractured coal reservoir , and 

Wang etc. (2021) conducted a study. 

Cao etc. (2021) and Yan etc. (2021) conducted an unsteady filtration 

study considering the effect of sand extraction on filtration and stress 

sensitivity in a well where sand is taken together. 

Zhang and Tong (2008) investigated the unsteady pressure response of 

the purge medium in stress-sensitive reservoirs. 

Gao etc. (2021) proposed a well-testing model considering stress 

sensitivity when performing pressure recovery tests in a high-pressure 

complex gas reservoir at the depth. 

So far, as all idealized outer boundaries related to the stress sensitivity 

considered by the authors are considered, it is considered that there is no 

strictly idealized boundary in the reservoirs, and is extremely rare, 

therefore, considering the external boundary as idealized boundaries, the 

reservoir cannot be objectively described and the error can be avoided in 

the analysis. 

Several researchers have investigated the flow characteristics in reservoir 

by considering the elastic outer boundary. 

Li etc. (2019a) considered the outer boundary as an elastic boundary in 

the filtration modeling of homogeneous reservoir, Li etc. (2020b) 

modeled the extended Bessel equation by introducing elastic boundary 

value condition, proposed the elastic boundary value problem, and 

proposed the filtering model of the loose homogeneous reservoir under 

elastic outer boundary condition, Kim etc. (2021a) considered the outer 

boundary condition as an elastic boundary condition, introduced the 

effective borehole radius, and introduced the effective borehole radius, 

and Zheng etc. (2021) developed a dual-medium filtration model of the 

shale gas reservoir with elastic outer boundary considering the adsorption 

and desorption process. 

In the analysis of fluid flow characteristics in reservoir, both stress 

sensitivity and elastic outer boundary conditions have a significant effect, 

but previous studies have not considered this simultaneously. 

In this paper, a well test analysis model of a dual-porosity reservoir 

considering stress sensitivity and elastic outer boundary conditions 

simultaneously is developed and the solution is obtained. 

EOB condition 

Li et al. (2019a) defined an elastic coefficient of reservoir as follows: 
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where   is the rate of the relative change of the pressure difference P with 

respect to r 

p is the function of time (t) and position (x, y, z).  

       ),,,( tzyxpp = ,                                       (3) 

As shown in Figure.1, the farther the distance from a well is, the lower 

the pressure difference is. Thus, the change direction of pressure 

difference is opposite to the change direction of the position. 

 
 

Figure 1: Distribution of pressure in reservoir versus radius, r 

Therefore, the elastic coefficient of outer boundary in a cylinder reservoir 

can be defined as follows (Kim et al., 2021a):.                         
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From Eq. 4, the EOB condition may be obtained as follows: 
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Eq. 5 or 6 is an elastic outer condition. 

Methodology 

Physical model 
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1) Reservoir consists of the natural fracture and matrix, the fluid flows 

through the nature fracture. That is, the reservoir a dual-porosity and a 

single permeability reservoir.    

2) It is a natural fractured reservoir considering stress sensitivity in 

permeability. 

3) The reservoir has a constant thickness h. 

4) The fluid flow is assumed to be isotropic and a single phase. 

5) The effects of the gravity and capillary are neglected. 

Mathematical model 

SSP 

In order to describe the degree of the SSP of reservoir and its influence, 

Pedrosa (1986) introduced the concept of a permeability modulus  for 

the low-permeability homogenous reservoir. As the reservoir pressure 

decreases, the opening of natural fracture decreases. Therefore, the 

permeability of the natural fracture also decreases. 

The permeability modulus  is defined as follows: 
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Integrating Eq. 1,  
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Continuity equation 
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The continuity equation of natural fracture system may be obtained as 

follows: 
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Since the permeability of matrix is extremely low, fluid flow between 

matrices is negligible and fluid flow from matrices to natural fractures 

may occur. Therefore, the following equation is obtained. 
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Motion equation 

It is assumed that the fluid flow in natural fracture system obeys Darcy's 

law. The following equation may be obtained, which shows the fluid flow 

in natural fracture. 
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Substituting Eq. 8 into Eq. 12,   
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State equation 

To describe the changes of oil density in the natural fracture and matrix 

during production of oil, the following equations are applied, 

respectively. 
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To describe the changes of porosity of the natural fracture and matrix 

during production of oil, the following equations are applied, 

respectively. 
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Interporosity flow equation between matrix and fracture 

It is assumed that the interporosity flow is pseudo-steady state. Then, the 

following equation should be satisfied (Warren and Root, 1963):  
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Seepage differential equation 

In order to obtain a seepage differential equation for matrix system, Eqs. 

15, 17 and 18 are substituted into Eq. 10. 
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Eq. 19 is a seepage differential equation for the matrix system in the low-

permeability natural fracture reservoir. 

In order to obtain a seepage differential equation for natural fracture 

system, Eqs. 13, 14, 16 and 18 are substituted into 9. 
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Substituting Eq. 19 into Eq. 20, 
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Equation 21 is a seepage differential equation for the natural fracture 

system considering the SSP in the low-permeability natural fracture 

reservoir. 

Initial and boundary conditions 

The reservoir has the uniform pressure. Therefore, initial condition is as 

follows. 
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 Inner boundary condition is as follows. 
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Considering the outer boundary as the elastic boundary, outer 

boundary condition can be obtained as follows. 
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Dimensionless mathematical model  
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For convenience, the following dimensionless variables are defined. 
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Introducing these dimensionless variables, the following equations 

can be obtained from Eqs. 19 and 21~26. 
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The dimensionless well radius is introduced as follows: 
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where 
S

DDe eRR = . 

Solution of model 

The seepage differential equation, Eq. 35 for fracture system and inner 

boundary condition, Eq. 37 have strong nonlinearity. Therefore, to 

linearize these equations, Pedrosa ’s transformation and perturbation 

transformation are applied 

Pedrosa ’s transformation is as follows (Pedrosa, 1986): 
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Applying Pedrosa ’s transformation, Eq. 42, and rearranging it,  
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Perturbation transformation 

The perturbation transformation is as follows (Pedrosa, 1986): 
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As the value of D  is small, the solution of zero-order perturbation 

can satisfy the accuracy requirement. 
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Laplace transformation 

The Laplace transformation of Eqs. 36 and 52~57 is taken with respect to 

TD. 

The Laplace transformation is defined as follows: 
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Substituting Eq. 62 into Eq. 61 and rearranging, 

( ) 0
1

0

0

2

0

2

=−



+




fD

De

fD

DeDe

fD
zf

rrr



,                                    

(66) 
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The general solution of Eq. 66 is as follows: 

( ) ( ))()(),( 000 zfrBIzfrAKzr DeDeDefD += ,                               

(68) 

( ) ( ))()()()( 11

0
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
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.               (69) 

Substituting Eqs. 68 and 69 into Eqs. 63 and 65, and rearranging, 

( ) ( )  ( ) ( ) 
z

zfIzfzfIBzfKzfzfzKA
1

)()()()()()( 1010 =−++

,                 (70) 

( )( ) ( ) ( )( )  ( ) ( )  0)()( 0110 =−−+−  zfRIzfRIRBzfRKzfRzfRKA De

P

DeDeDeDeDe

P fDfD 

. (71) 

Solving Eqs. 70 and 71 simultaneously, A and B can be obtained as 

follows: 

( ) 41234 aaa-az/aA += ,                                             (72) 

( ) 41233 aaa-az/-aB += ,                                             (73) 

where ( )( ) ( ) ( )( )zfKzfzfzKa 101 += , 

( )( ) ( ) ( )( )zfIzfzfzIa 102 −= ,   

( )( ) ( ) ( )( )zfRKzfRzfRKa DeDeDe

PfD

103 +−=   

( )( ) ( ) ( )( )zfRIzfRzfRIa DeDeDe

PfD

104 −−=  . 

From Eq. 64, 

( ) ( )( ) ( )( )zfBIzfAKTDfDwD 0000 ,1 +==  .              (74) 

When →x , the values of 0th and 1st order Bessel functions of the 

first kind converge to infinity. Therefore, these values cannot be 

calculated by using computer. In order to avoid this, the following 

asymptotic formula is used. 
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Substituting Eq. 75 into Eq. 74 and rearranging,  
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(76) 

When ( ) →zfRDe , from Eq. 76, the following equation is 

obtained. 

( )( )
( )( ) ( ) ( )( )zfKzfzfzK

zfK
wD

10

0

0
+

= .                                

(77) 

0wD  is obtained by numerically inverting Laplace transformation, 

Eqs. 76 and 77. In order to numerically invert Laplace transformation, the 

algorithm by Kim et al. (2021b) is used, where n=25, a=6.5, k=2, σ=0. 

Pressure is calculated with Eq. 42 and pressure derivative with the 

following equation. 
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Result and Discussion 

Verification of model 

Comparison verification  

To verify our model, this is compared to the model for the DPR with EOB 

without consideration of the stress sensitivity. When stress sensitivity is 

not considered in this model, as there is permeability modulus   in 

denominator of Eq. 42 and it converges into infinity, (here). Other 

parameters are as follows: RDe=2000,. Figure.2 shows the result of 

comparison of two models. The solid lines represent our model and circle 

mark the dual-porosity without consideration of stress sensitivity (Kim et 

al., 2021a). From Figure.2, it can be seen that two models agree well, 

which shows that our model is valid. 

 
Figure 2: Result of comparison of our model to the model without consideration of stress sensitivity 

Analysis of Sensitivity 

Effect of permeability modulus   on the PPD curves 

Figure.3 shows the effect of the permeability modulus (=0.001, 0.1, 0.2, 

0.3) on the PPD curves. Other parameters are as follows: CDe2S=100, ,  

=10-3, =10-5, RDe=2 000. As shown in Figure.3, the larger value of, 

the higher PPD curves. As time increase, the effect of the permeability 

modulus on PPD curves increases. When, horizontal line of value 0.5 does 

not appear in the middle stage of pressure derivative curve. This means 

that the SSP affects analysis of the well-testing data. 

 

Figure 3. Effect of  gamma on the PPD curves 

Effect of elastic coefficient   of outer boundary on the PPD curves 

According to Li et al. (2019a), reflects the closed boundary, the constant 

pressure boundary, the infinite boundary and   between closed boundary 

and constant pressure boundary. 

Figure.4 shows the effect of elastic coefficient (=0, 0.1, 1, 1000) of outer 

boundary on the PPD curves. Other parameters are as follows: 

CDe2S=100, =10-3 =10-5, RDe=2 000. As shown in Figure.5, does 

not affect the early and middle stages of the pressure derivative curves, 

but affects the late stage of the pressure derivative curves. When  

the value of   is zero, it reflects the closed boundary. While, when the 

value of   is 1 000, it reflects that is close to the closed boundary. 

Moreover, when, it reflects the infinite boundary. This means that with 

the value of, the middle stage of PPD curves are between closed boundary 

and constant pressure boundary. However, the outer boundary condition 

between closed boundary and constant pressure boundary has not been 

considered at the model of reservoir with the ideal outer boundary 

(infinite boundary, closed boundary and constant pressure boundary). 

Thus, our model has generality in comparison to the model with ideal 

outer boundary. Therefore, this means that the accuracy of well-testing 

analysis can be enhanced.  
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Figure.4. Effect of elastic coefficient   of outer boundary on the PPD curves 

Effect of CDe2S on the PPD curves 

CDe2S is a dimensionless quantity, which considers wellbore storage and 

skin simultaneously, and shows degrees of improvement or damage of 

well. 

Figure.5 shows the effect of CDe2S (CDe2S=1000, 2 000, 5 000, 10 000) 

on the PPD curves. Other parameters are as follows:,  =0.01,  , =10-5, 

=10-5, RDe=2 000. CDe2S affects the middle stage of pressure curve. 

The lager the value of CDe2S increases, the upper the pressure derivative 

curves are in the middle stage and the earlier the effect of boundary 

appears on the pressure derivative curves. 

  
Figure 5: Effect of CDe2S on the PPD curves 

Effect of skin S on the PPD curves 

Figure.6 shows the effect of skin S (S=-3, -1, 0, 1, 3) on the PPD curves. 

Other parameters are as follows:  =0.01, =10-3, =10-4, CDe2S=10, 

RD=5 000. Skin S affects the middle and late stages of the PPD. The  

smaller value of S decreases, the upper the PPD curves are, the higher 

“hump” of the pressure derivative curve gets, and the later it appears. 
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Figure 6: Effect of skin S on the PPD curves 

Effect of dimensionless radius RD on the PPD curves 

Figure.7 shows effect of dimensionless radius RD (RD =100, 1 000, 5 

000, 10 000) on the PPD curves. Other parameters are as follows:  =0.01,  

 =− =10-5, CDe2S=1 000,. RD affects only the late stage of the 

PPD curves. The larger the value of RD increases, the later the effect of 

boundary appears. 

 

Figure 7: Effect of dimensionless radius RD on the PPD curves 

Effect of inter-porosity flow coefficient on the PPD curves 

Figure.8 shows effect of inter-porosity flow coefficient (=10-2, 10-3, 10-

4) on the PPD curves. Other parameters are as follows:  =0.01, =10-4, 

CDe2S=10, RD=5 000. The inter-porosity flow coefficient   affects the 

middle stage of the PPD curves. The larger the value of increases, the 

upper the PPD curves are, the higher “hump” of the pressure derivative 

curve gets, the deeper the concave of the pressure derivative curve are and 

the later the concave appears. 
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Figure 8: Effect of inter-porosity flow coefficient   on the PPD curves 

Effect of storage ratio   on the PPD curves 

Figure.9 shows effect of storage ratio (=10-1, 10-2, 10-3, 10-4) on the 

PPD curves. Other parameters are as follows:  =0.01, =10-4, CDe2S=10, 

, RD=5 000.   affects both the early and middle period of flow. The smaller  

the upper the pressure curves are, the higher “hump” of the pressure 

derivative curve gets, the deeper the concave are and the earlier the 

concave appears. 

 

Figure 9: Effect of storage ratio   on the PPD curves 

Both the SSP and the condition of elasticity of the outer boundary greatly 

affect the well-testing analysis, but the previous papers have considered 

these effects individually and have not considered simultaneously, which 

may result in the considerable errors in the well-testing analysis. The well-

testing model proposed in our paper considers the effect of the SSP and 

the condition of elasticity of the outer boundary simultaneously. Thus, 

this model may improve the accuracy of the well-testing analysis for the 

DPR. 

There are also several models including the triple-porosity model. 

However, this model is limited to the dual-porosity model for vertical 

well. We are going to study the triple-porosity dual-permeability model 

for horizontal and inclined well considering EOB. 

Conclusion 

Based on the consideration of stress sensitivity and elastic outer boundary 

conditions, we first formulated the seepage differential equation in the 

dual-porosity reservoir considering wellbore storage and skin factor, and 

defined the dimensionless variable to facilitate the derivation of the 

solution. 

This mathematical model is strong nonlinear, the Pedrosa’ s 

transformation is applied.        

However, after the transformation of Pedrosa is applied, the mathematical 

model is still nonlinear, So the perturbation transformation is performed 

to eliminate the nonlinearity of the model, and then the Laplace 

transformation is performed to obtain the analytical solution of the well 

test model in the dual-porosity reservoir considering elastic outer 

boundary and stress sensitivity in the Laplace space, and the Laplace 

numerical inversion (Kim etc., 2021b) is applied to obtain the 

dimensionless pressure and pressure derivative model curve in the 

wellbore. 

To verify the accuracy of the model, we verified that the model is valid 

compared with the dual-porosity reservoir model (Kim etc., 2021a) with 

the elastic boundary without considering stress sensitivity, we performed 

a parametric sensitivity analysis on the pressure and pressure derivative 

curve and showed that the elastic outer boundary and stress sensitivity 

affect the well- test data analysis. 

The model presented in this paper can improve the accuracy of well-test 

data analysis compared to the well test model in the previous dual-

porosity reservoir. 

Nomenclature 

B-Volume factor, dimensionless 
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C- wellbore storage coefficient, m3/Pa 

CD-Dimensionless wellbore storage, dimensionless 

Cm, Cf-Compressibility of matrix system and natural fracture system, 

respectively, Pa-1 

Cmt-Total compressibility of matrix system and oil, Pa-1 

Cft-Total compressibility of natural fracture system and oil, Pa-1 

Co-Oil compressibility, Pa-1 

km, kf-Permeability of matrix system and natural fracture system, 

respectively, m2 

kfi-Permeability of natural fracture under initial condition, m2 

h- Reservoir thickness, m 

p-Reservoir pressure, Pa 

R- outer boundary radius, m 

RD- dimensionless outer boundary radius, dimensionless 

pm, pf-Pressure in matrix system and natural fracture system, 

respectively, Pa 

pi-Initial reservoir pressure, Pa 

pw-Wellbore pressure, Pa 

q-Well rate, m3/s 

q*-Mass flow velocity between matrix system and fracture system in the 

reservoir of unit volume, kg/(m3s) 

r-Radius, m rw-Well radius, m 

S- skin, dimensionless 

t-Time, s 

tD-Dimensionless time, dimensionless 

z-Laplace variable, dimensionless 

-Shape factor between matrix and fracture, m-2 

-Oil density at pressure pm in the matrix system and at pressure pf in 

natural fracture system, respectively, kg/m3 

 -Oil density under initial condition, kg/m3 

 - Permeability modulus, Pa-1 

 -Dimensionless permeability modulus, dimensionless 

 -Dimensionless inter-porosity flow coefficient, dimensionless 

 - Storage ratio, dimensionless 

 -Viscosity of oil, Pa∙s. 

 -Porosity of matrix system and natural fracture system, respectively, 

fraction 

-Porosity of matrix system and natural fracture system under initial 

condition, respectively, fraction 

-Flow velocity of fluid in matrix system and natural fracture system, 

respectively, m/s 

Superscripts 

- Laplace transformation 

Subscripts 

D-Dimensionless 

m-Matrix 

f-Fracture 

w-Well 
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